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Abstract
We have investigated analytically quantum tunnelling of large spin in the
biaxial spin system with the magnetic field applied along the hard and medium
anisotropy axes by using Schrödinger’s interpretation of quantum mechanics.
When the magnetic field parallels the hard axis, the tunnel splittings of all the
energy level pairs become oscillatory as a function of the magnetic field. The
quenching points are completely determined by the coexistence of solutions
of Ince’s equation. When the magnetic field points to the medium axis, the
tunnel splitting oscillations disappear due to the absence of coexistence of
solutions. These results coincide with the recent experimental observations in
the nanomagnet Fe8.

PACS numbers: 75.10.Dg, 03.65.Ge, 03.65.Sq, 36.90.+f, 75.45.+j

In recent years much attention has been paid to quantum tunnelling of magnetization (large
spin) in nanomagnets, both from experiment and theory [1]. Several magnetic particles have
been identified as promising candidates for the observation of such macroscopic quantum
phenomena, where the magnetization (or the Néel vector) tunnels from one potential minimum
to another. Excellent examples that have widely been studied are the molecular nanomagnets
Fe8 [2–5] and Mn12 [6–8], which have well-defined structures and magnetic properties. On
the one hand, these phenomena are very interesting from a fundamental point of view because
they extend our understanding of the transition between quantum and classical behaviours.
On the other hand, tunnelling of the magnetization changes the magnetic properties of the
nanomagnets, which has potential application for data storage technology, e.g. for making
qubits—the elements of quantum computers.

Recently, Wernsdorfer and Sessoli [9] observed a novel phenomenon, i.e. oscillations of
tunnel splittings of the ground and excited states in the nanomagnet Fe8 described well by the
spin Hamiltonian [2–5]

H = AS2
x − BS2

y − gµBS · H (1)
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where S is a spin operator, H is the magnetic field applied in the xz-plane, the spin quantum
number s = 10, A ≈ 0.092 K, B ≈ 0.229 K, g ≈ 2 is the g-factor, µB is the Bohr magneton.
The zero-field Hamiltonian has a biaxial symmetry with hard, easy and medium axes along
x, y and z, respectively. When H rotates from x to z direction, the oscillations of tunnel
splittings of all the level pairs gradually disappear.

In fact, oscillation of the ground-state tunnel splitting
Es of model (1) with the magnetic
field Hx (H‖x) was predicted by using the instanton technique [10]. The tunnelling of spin is
quenched when

h = h∗
(

1 − n

s
− 1

2s

)
n = 0, 1, . . . , 2s − 1. (2)

Here, h = Hx
Hc

, Hc = 2s(A+B)
gµB

, is the critical field at which the energy barrier vanishes,

−h∗ < h < h∗ =
√

A
A+B , and s is an integer or half odd integer. This kind of topological

quenching is the result of quantum interference of different instanton paths within the context
of macroscopic quantum tunnelling [11, 12], and need not be related to Kramers’ degeneracy.
Up to the first order of the rate B

A+B , formula (2) was rederived by the quantum-mechanical
perturbation theory [13]. Very recently, Garg extended his previous paper [10] to the excited
states by using a discrete Wentzel–Kramers–Brillouin approach [14]. To order s−1, the
quenching points for the excited state pairs are the same as those for the ground-state pair.
With increasing magnetic field, the quenching points gradually decrease and finally disappear.
These results were also obtained by the potential field description of spin systems with exact
spin-coordinate correspondence [15] and the instant technique [16, 17]. Because quantum
tunnelling of spin in the nanomagnets was observed at very low temperatures, the quantization
of spin levels becomes very important to explain the experiments well. In essence, the energy
spectrum of the spin systems can help us to understand the mechanism of spin tunnelling
thoroughly. In this paper, we have analytically diagonalized the Hamiltonian (1) in the
framework of Schrödinger’s interpretation of quantum mechanics. The energy spectrum of
the spin model is obtained in the large-s limit. It is clearly shown that when H‖x, the tunnel
splittings of the ground and excited state pairs are oscillatory as a function of Hx and the
quenching points agree with the previous results and the numerical simulation of model (1).
When H‖z, the tunnel splitting oscillations of all the energy level pairs disappear, which
coincided with those obtained by the phase space path integral [18]. These phenomena have
also been observed in the experiments [9, 19].

Let E and�m be the eigenenergies and eigenstates of H, respectively, then the eigenvalue
equation in the basis |s,m〉z reads

um−1�m−2 + um+1�m+2 − tm− 1
2
�m−1 − tm+ 1

2
�m+1 +

{−E + 1
2 (A− B)[s(s + 1)−m2]

− gµBHzm
}
�m = 0 (3)

where

um±1 = 1
4 (A + B)

√
[s(s + 1)− (m± 1)2]2 − (m± 1)2

tm± 1
2

= 1
2gµBHx

√
s(s + 1)− (

m− 1
2

)2
+ 1

4 .

Obviously, it is very difficult to strictly solve equation (3) for arbitrary s. However, in the
large-s limit, equation (3) becomes [20]
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(1 − x2)
d2�

dx2
− 2x

d�

dx
+

[
− E

A + B
− 1

4
− 1

4

1

1 − x2
+
As(s + 1)

A + B

(
1 − x2)

− gµBHz
√
s(s + 1)

A + B
x − gµBHx

√
s(s + 1)

A + B

√
1 − x2

]
� = 0. (4)

Here, x = m√
s(s + 1)

and only the leading terms remain, i.e. O(s−1). In deriving equation (4),
we used

um±1�m±2 = um±1

[
�m±1 ± �′

m±1√
s(s + 1)

+
�′′
m±1

2s(s + 1)
+ · · ·

]

= u�± 1√
s(s + 1)

d

dx
(u�) +

1

2s(s + 1)

d2

dx2
(u�) + · · ·

± 1√
s(s + 1)

[
u

d�

dx
± 1√

s(s + 1)

d

dx

(
u

d�

dx

)
+ · · ·

]
+

u

2s(s + 1)

d2�

dx2
+ · · ·

tm± 1
2
�m+1 = tm± 1

2

[
�m± 1

2
±

�′
m± 1

2

2
√
s(s + 1)

+ · · ·
]

= t�± 1

2
√
s(s + 1)

d

dx
(t�) + · · · ± t

2
√
s(s + 1)

d�

dx
+ · · ·

where

u = 1

4
(A + B)

√
s2(s + 1)2(1 − x2)2 − s(s + 1)x2

≈ 1

4
(A + B){s(s + 1)(1 − x2)− x2/[2(1 − x2)]}

and t ≈ 1
2gµBHx

√
s(s + 1)

√
1 − x2 for large s.

Taking the transformations� = (1 − x2)−
1
4 y(x) and x = sin(2t), and substituting them

into equation (4), we finally obtain Hill’s equation [21]

d2y

dt2
+

[
� + (a − b) cos(2t) + (c − b) sin(2t) +

b2

8
cos(4t)

]
y = 0 (5)

where

� = −4E + 2As(s + 1)

A + B
a = b − 4gµBHx

√
s(s + 1)

A + B

b = ±4

√
As(s + 1)

A + B
c = b − 4gµBHz

√
s(s + 1)

A + B
.

(6)

Up to now, we have mapped the spin problem (1) onto a particle problem (5). The energy
spectrum of H is completely determined by the characteristic levels of Hill’s equation. We
note that when A = 0 and H = 0, � = m2. So E = −B(

m
2

)2
which are the eigenvalues of

the Hamiltonian (1) with integer s for even m or with half odd integer s for odd m.
For equation (5), there exist two monotonically increasing sequences of real numbers

a0, a2i , b2i , a
′
2i−1 and b′

2i−1 (i = 1, 2, . . .) such that equation (5) has a solution with period π
if and only if � = a0, a2i or b2i , and a solution with period 2π if and only if � = a′

2i−1 or
b′

2i−1. The a0, a2i , b2i , a
′
2i−1 and b′

2i−1 satisfy inequalities

a0 < b
′
1 � a′

1 < b2 � a2 < b
′
3 � a′

3 < b4 � a4 < · · · . (7)

According to the relation between E and � in equation (6), it is easy to see that the ground
state of H corresponds to the highest characteristic level of Hill’s equation with period π or 2π
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allowed, depending on integer or half odd integer spin s. The lower the characteristic level of
equation (5), the higher the associated eigenstate of the Hamiltonian (1). The tunnel splitting
of the characteristic level pair of equation (5) with period π is


�2i = a2i − b2i (8)

and the tunnel splitting of the characteristic level pair of equation (5) with period 2π is


�′
2i−1 = a′

2i−1 − b′
2i−1. (9)

The tunnel splitting of the energy level pair of the Hamiltonian (1) can be evaluated by the
tunnel splitting of its associated characteristic level pair using equation (6). We note that when
two of the three parametersA, Hx andHz vanish, Hill’s equation (5) becomes the well-known
Mathieu equation [22]. So the tunnel splittings of all the energy level pairs of the Hamiltonian
(1) are monotonically increasing rather than oscillatory in the three cases [20]. For arbitrary
parameters A, B, Hx and Hz, it is difficult to analytically solve equation (5). Here we only
consider the following two special cases.

(i) Hz = 0 (i.e. c = b). In this case, equation (5) reduces to Ince’s equation, which has
been studied in a set of literature due to its physically basic importance [21]. To observe the
oscillations of tunnel splittings of model (1), we must find some vanishing points at which
its eigenstates are degenerate, i.e. a2i = b2i or a′

2i−1 = b′
2i−1. This is equivalent to finding

the coexistence of solutions of Ince’s equation, which means that two linearly independent
solutions (one even and one odd) with period π or 2π exists. Fortunately, due to the positive
coefficient of the last term cos(4t), Ince’s equation has the coexistence of solutions [21] with
period π when

a = −2nb (10)

and with period 2π when

a = −(2n− 1)b (11)

where n = 0,±1,±2, . . .. Obviously, the quenching points of tunnel splittings of the
characteristic level pairs with period π are exactly shifted by half a period relative to those
with period 2π . Under conditions (10) and (11), Ince’s equation becomes the Whittaker
equation [21]

d2y

dt2
+

[
�− pb cos(2t) +

b2

8
cos(4t)

]
y = 0. (12)

Here, p = 2n+1 or 2n for equation (10) or (11), respectively. For equation (12), when b → 0,
then a0 → 0, a2i and b2i → (2i)2, and a′

2i−1 and b′
2i−1 → (2i − 1)2 [23].

Integer spin s. Due to equation (6), the eigenstates of the Hamiltonian (1) correspond to
the characteristic levels of Ince’s equation with period π , i.e. Ea0 = − 1

4 (A +B)a0 +E0, E
a
i =

− 1
4 (A + B)a2i +E0 and Ebi = − 1

4 (A + B)b2i +E0, E0 = 1
2As(s + 1), i = 1, 2, . . . , s. So the

tunnel splitting of the energy level pair
(
Eai , E

b
i

)
is


Ei = Ebi − Eai = 1
4 (A + B)
�2i . (13)

From equation (10), we have 
Ei = 0 when

Hx = (2n + 1)
√
A(A + B)

gµB
. (14)

The existence of the quenching fields (14) clearly shows that the tunnel splittings of all
the energy levels of H are oscillatory as a function of Hx and the period of oscillations

H = 2

√
A(A+B)
gµB

. This coincides with Garg’s result (2) [10, 14]. For equation (12), when
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Figure 1. The exact quenching points of all the level pairs
of the Hamiltonian (1) with s = 10, A = 0.092K,B =
0.229K and Hz = 0.

|p| = 2l + 1, then the even intervals of instability on the � axis disappear with at most l + 1
exceptions [21]. In other words, the characteristic values a0, a2i and b2i satisfy

a0 < b2 < a2 < · · · < b2l < a2l < b2(l+1) = a2(l+1) < · · · < b2s = a2s . (15)

This means that the tunnel splittings of the l highest excited state pairs of the Hamiltonian (1)
do not vanish while those of the other s− l energy level pairs vanish. With increasing magnetic
field Hx (i.e. |p|), the quenching points gradually decrease and finally disappear when l � s.
The configuration of the quenching points agrees with that from the numerical simulation of
the Hamiltonian (1) (see figure 1).

Half odd integer spin s. The eigenstates of the Hamiltonian (1) correspond to the
characteristic levels of equation (12) with period 2π , i.e. Ea

′
i− 1

2
= − 1

4 (A + B)a′
2i−1 + E0 and

Eb
′
i− 1

2
= − 1

4 (A + B)b′
2i−1 + E0, i = 1, 2, . . . , s + 1

2 . The tunnel splitting of the energy level

pair
(
Ea

′
i− 1

2
, Eb

′
i− 1

2

)
reads


E′
i− 1

2
= Eb′

i− 1
2
− Ea′

i− 1
2

= 1
4 (A + B)
�′

2i−1. (16)

According to equation (11), we obtain
E′
i− 1

2
= 0 when

H ′
x = 2n

√
A(A + B)

gµB
. (17)

Obviously, the period of oscillations of tunnel splittings for all the energy level pairs(
Ea

′
i− 1

2
, Eb

′
i− 1

2

)
is 
H ′ = 2

√
A(A+B)
gµB

, which is the same for the energy level pairs
(
Eai , E

b
i

)
.

However, the quenching points for half odd integer spin s are shifted half a period (i.e.√
A(A+B)
gµB

) relative to those for integer spin s. For equation (12), if |p| = 2l, then at most l + 1
odd intervals of instability on the � axis remain, i.e.

b′
1 < a

′
1 < b

′
3 < a

′
3 < · · · < b′

2l−1 < a
′
2l−1 < b

′
2l+1 = a′

2l+1 < · · · < b′
2s = a′

2s . (18)

It is easy to see that the tunnel splittings of the s − l + 1
2 lowest energy level pairs vanish,

but the tunnel splittings of the other l highest energy level pairs do not. When l > s − 1
2 ,

quenching points do not exist. These results also coincide with those obtained by the discrete
WKB approach [14].
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(ii) Hx = 0 (i.e. a = b). Let t → t + π
4 , then equation (5) becomes Ince’s equation

d2y

dt2
+

[
� + (c − b) cos(2t)− b2

8
cos(4t)

]
y = 0. (19)

Because the coefficient of the last term cos(4t) is negative, equation (19) does not possess
the coexistence of solutions, i.e. two linearly independent solutions [21]. This means that the
sign of equality in inequalities (7) cannot hold and each energy level of H is singlet in the
parameter space. So the tunnel splittings of all the level pairs are not oscillatory with Hz,
which coincides with the experiments [9, 19].

In conclusion, we studied quantum tunnelling of large spin in the biaxial spin systems
using quantum mechanics. The energy spectrum of spin model (1) is obtained by solving Hill’s
equation (5), which is derived directly from the eigenvalue equation of the spin problem in the
large-s limit. It is surprising that when H‖x, the vanishing points of the tunnel splittings of all
the energy level pairs obtained here by the coexistence of solutions of Ince’s equation coincide
with those given by the WKB method [10, 14] and other approaches [15–17]. However, our
approach is a natural way of explaining the oscillations of tunnel splitting in the biaxial spin
system, which is also applied in other spin Hamiltonians.
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